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Supplementary Figure 1.  

A. P66
Shc

 expression in adipocytes. P66
Shc

 protein expression in BAT and WAT (upper panel), 

BAT-derived pre-adipocytes (BAT ADPC; central panel), and WAT-derived pre-adipocytes 

(WAT ADPC; lower panel). I: insulin treatment; d: days of treatment. 

B. Effects of p66
Shc

 and p66
Shc

qq expression in Foxo1 localization. Foxo1 localization in 

untreated and insulin treated p66
Shc

-/- BAT pre-adipocytes infected with empty (Vect), p66
Shc

 or 

p66
Shc

qq retroviral vectors. 

C. Trygliceride accumulation in WT and p66
Shc

-/- BAT pre-adipocytes upon treatment with 

IBMX/DEX. White light microscopy pictures of Oil red-stained BAT pre-adipocytes from WT 

and p66
Shc

-/- mice, untreated or after treatment with IBMX-dexametasone (IBMX-DEX), and 

their corresponding OD values (this experiment is representative of 3 that gave comparable 

results). 

 

Supplementary Figure 2. 

Gene regulations in WT and p66
Shc

-/- BAT pre-adipocytes treated with insulin. Venn diagrams 

representing overlapping gene regulations in WT and p66
Shc

-/- BAT pre-adipocytes treated with 

insulin. The table reports the top 20 insulin-regulated genes in each group. In bold are indicated 

the genes whose analysis is showed in Figure 3C.   

 

Supplementary Figure 3.  

A. Lipid profile and blood levels of insulin and glucose in WT and p66
Shc

-/- mice. Plasma levels 

of free fatty acids, triglycerides, cholesterol, insulin and glucose in WT and p66
Shc

-/- mice fed 

standard (SD) and high fat (HF) diet (n=20 mice per group). 

B. Effect of N-acetylcisteine supplementation on weight gain. Body weight curves of WT 129Sv 

male mice fed standard or high fat (HF) diets plus or minus 40 mM NAC in the drinking water 

(n=12 mice per group). 

 

Supplementary Figure 4.  

Model of p66
Shc

-mediated regulation of TG synthesis in adipocytes. The scheme depicts the role 

of p66
Shc

 in regulating insulin-mediated TG accumulation in adipocytes, and highlights its role in 

the integration of insulin signaling (right side of the scheme) and mitochondrial respiration (left 

circle). Availability of carbon sources (Food) is indicated at the top as major determinant of the 

levels of circulating insulin. Engagement of insulin receptors in adipocytes leads to p66
Shc

 

activation (via phosphorylation, as described in the text; vertical red arrow) and its translocation 

(indicated by the arrowed curve) within the mitochondrial inter membrane space (in pink). There, 

p66
Shc

 generates H2O2, which selectively potentiates insulin signaling (the red arrow indicates the 

insulin signaling branch regulated by p66
Shc

-generated H2O2: PTEN-PI3K-AKT-Foxo1 pathway, 

as described in the text) and contributes to gene expression reprogramming by insulin. Regulated 

expression of selected target genes (UCP1 and others, see text) leads to respiration coupling, 

inhibition of -oxidation and TG accumulation. The circled scheme on the left magnifies the 

electron transfer chain (green arrowed curves refer to electron flow across complexes I to IV) and 

the redox reaction between p66
Shc

 (in red) and reduced cytochrome c (c) that catalyzes the partial 

reduction of O2 to H2O2. Emphasis is given to the fact that production of H2O2 by p66
Shc

 depends 

on availability of respiratory substrates, thus allowing cross-talk between the energetic status of 

adipocytes and the insulin signaling pathway, via p66
Shc

. 
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Supplementary Figure 3

Insulin (ng/dL)

Free Fatty Acid (meq/L)

Triglycerides (mg/dL)

Cholesterol (mg/dL)

WT SD WT HFD p66-/- SD p66-/- HFD

0.57 ± 0.12 1.24 ± 0.32 0.45 ± 0.11 1.11 ± 0.28

68 ± 9

1.34 ± 0.22 1.47 ± 0.18 0.93 ± 0.15 0.90 ± 0.12

143 ± 30 61 ± 6 118 ± 35

53 ± 6 112 ± 23 55 ± 8 103 ± 17

Glucose (mg/dL) 96 ± 5.4 103 ± 7.9 89 ± 4.5 90 ± 4.3
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